If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2-60x+100=0
a = -16; b = -60; c = +100;
Δ = b2-4ac
Δ = -602-4·(-16)·100
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-100}{2*-16}=\frac{-40}{-32} =1+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+100}{2*-16}=\frac{160}{-32} =-5 $
| 2x+5/7-11+14÷2=7x+2/8-4/5 | | 2x2+7x-2=11 | | 5(3-x)=4(2x-6) | | 8(y+3)+y=3(y+2)-5 | | -8(-8x-6)=-6x=-22 | | 14x=27 | | 6s−4=8(2+1/4s) | | (2x+3)^2=36 | | 2x^2-10x-375=0 | | 32-y/y=3/5 | | 2x^2+7x-2=11 | | (x-2)^3=0 | | -6n+2=-5n-19 | | F(1)=8n-3 | | 4x^2-5=29 | | 5/3+1/4t=5 | | -4(t-3)+8t=9t-1 | | -13-(-1)=x/12 | | 8−(3x+3)=x−(2x+1) | | x^2−6x+5=0 | | 3y^2+18y+21=0 | | 9(-p-4)=18 | | 4(2c-1)-6=4c+6 | | 14/5+1/2t=4 | | G(-4)=3n-10 | | 3y^2+6y+21=0 | | 4-a=a+16 | | 2x-(7x-3)=8-(x+9) | | x^2-19x+13=0 | | 4x-5×(x-1)=-2x+4 | | 12/14=18/x | | -4y-13=2y+17 |